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Abstract—Contract-based design (CBD) is a system development
methodology that addresses the ever-increasing complexity and het-
erogeneity of cyber-physical system design problems. In CBD, systems
and subsystems are represented by assume-guarantee contracts,
formal specifications that make a distinction between supported envi-
ronments and guarantees offered by a component. While the assume-
guarantee formalism offers compact encoding of specifications, the
port directions, i.e., the classifications of ports as input and output
ports, implied by its semantics make it difficult to express properties
of physical systems and subsystems where the relation between inputs
and outputs is implicit. In this paper, we propose constraint-behavior
contracts to specify physical components without the need to classify
ports. The operations and relations between constraint-behavior
contracts are defined to facilitate system reasoning without port
directions. The capability of constraint-behavior contracts to integrate
with assume-guarantee contracts gives the user the choice of a
formalism to use at different abstraction layers. A case study based on
an Unmanned Aerial Vehicle design problem shows that the proposed
constraint-behavior contracts can facilitate system verification by
expressing physical components, reducing the number of contracts,
and providing an intuitive encoding of contracts.

I. INTRODUCTION

Cyber-Physical Systems (CPS) involve computation and phys-
ical processes whose behavior is defined by their interaction [1].
As the need for large-scale CPS increases in applications such
as autonomous vehicles, Industry 4.0, and smart grids, the het-
erogeneous nature and complex interaction between the parts in
CPS cause the prolonged and error-prone design process and
thus result in prohibitively high costs. Contract-based design
(CBD) is a system development methodology that relies on
contracts—formal specifications that define the expected envi-
ronments and implementations—to enable correct-by-construction
design, incorporate different design aspects, and reduce design
complexity [2]-[5]. To tackle the design challenges caused by
this complexity and heterogeneity, the formalisms of contracts
and contract-based design have attracted research interests [6]—-[9].
Among many formalisms, assume-guarantee contracts are among
the most promising candidates due to their compactness and ease
of use. An assume-guarantee contract is a pair of assumption and
guarantee sets C = (A, G) [10]. Its semantics states that when the
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Fig. 1: Two examples of systems that use many implicit equations
for modeling: (a) a Modelica example model of a spring mass

system [14], and (b) a SPICE model of a parasitic extracted D
Flip-Flop from the ASAP7 Design Kit [15].

environment behavior satisfies the assumption set A, the specified
component produces behaviors within the guarantee set GG. The
acceptable behaviors allowed by the contracts are, therefore, G UA,
and the behaviors under the environments F are £ N (G U A).
Assume-guarantee contracts have several operations which are
relevant for system design [10]—[13].

In order to apply contract-based design in all steps of the
CPS design process, it is necessary to formulate specifications
as contracts for every component, including both the cyber and
physical components. The cyber components, such as networks and
control algorithms, monitor and control the physical components.
Physical components, such as sensors and actuators, interact with
the environment and create feedback loops for the computation
components to perform specific actions. Therefore, the ability
to express specifications for these diverse components and their
interactions in contracts is crucial for fully leveraging the benefit
of contract-based design.

The assume-guarantee contracts implicitly require port direc-
tions, and the assumption should be expressed only by the input
ports. However, for many physical system applications, implicit
equations are natural for system modeling [16]. Converting an
implicit equation into an explicit form requires solving the equa-
tions either in a closed form or using a numerical algorithm
where a closed form does not exist. As shown in Figure 1,
electronic and mechanical systems are usually defined by a system
of implicit equations with more than one thousand variables.
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Fig. 2: Implicit port directions in assume-guarantee contracts: (a) a
resistor with maximum power constraint as a motivating example
component and (b) three assume-guarantee contract formulations
for the resistor. The contract expresses the behaviors (V,I) cor-
rectly only when the actual input ports match the ports for defining
the assumption.

Popular modeling tools are Simulink [17], which utilizes a signal-
flow-based model requiring an explicit relation between input and
output, and Modelica [14], which use equation-based models that
do not need an explicit relation.

Figure 2 illustrates a challenge of writing assume-guarantee
contracts for a resistor—a component allowing different port
directions. The resistor, as shown in Figure 2a, can take voltage
as input and current as output, and it can also take current as
input and provide current as output. The port directions depend
on the environment, meaning the component does not define its
port directions. One may formulate the assume-guarantee contracts
for the resistor as the three formulations shown in Figure 2b.
However, all these formulations express the behaviors correctly
only when the actual input ports match the ports for defining the
assumption. When the actual input ports do not match the ports
in the assumption, unexpected behaviors that cannot be produced
by the specified components are allowed by the contracts.

Figure 3 shows an example in which the explicit relation of the
output voltage to the input voltage requires solving an implicit
equation. As a result, the ability to express the property of a
physical system in implicit equations is important to avoid equation
solving.

The requirements for port directions have several disadvantages.
First, implicit equations need to be converted to explicit equations
that reflect the input ports. For example, the assumptions of the
formulations Cy and Cs in Figure 2 are not straightforward from
the original bound on power. Second, the size of the contract
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Fig. 3: An example showing that even when the port directions
of individual components are known, the composed system is
expressed in terms of implicit equations and requires solving
equations to convert it to an explicit expression.

library and the complexity of using contracts increases since a
contract cannot be reused for environments with different inputs.
The designers have to create multiple contracts with different
combinations of the port directions and select the one that matches
the inputs from the environments. Finally, contracts cannot be used
when we are unable to define the port directions since we cannot
select the contracts without the environment.

This paper addresses these issues by proposing a new contract
formalism called constraint-behavior contracts for expressing spec-
ifications of physical components using implicit equations. To the
best of our knowledge, this is the first approach that explicitly
considers contract formulations for physical components governed
by implicit equations. The formalism has the following properties:

« Constraint-behavior contracts are invariant to port directions,
which allows the contract library to be compactly created
without solving implicit equations and enumerating combi-
nations of port directions.

o The physical meaning of system requirements is preserved
by the implicit equations in constraint-behavior contracts.
Preserving physical meaning in contracts allows designers to
formulate contracts and discover potential design faults more
easily.

« Constraint-behavior contracts can be integrated with assume-
guarantee contracts in the contract-based design process. The
approach is exemplified by a demonstration based on an
Unmanned Aerial Vehicle (UAV) system design verification
problem.

The remainder of this paper is organized as follows. In Sec-
tion II, we introduce contracts and assume-guarantee contracts.
Then, in Section III, we present the Constraint-behavior contracts
and discuss their properties. Section IV compares constraint-
behavior contracts with assume-guarantee contracts. Next, in
Section V, we introduce the verification methodology for using
constraint-behavior contracts. We demonstrate the application of
constraint-behavior contracts in a UAV propulsion system design
verification in Section VI. In Section VII, we discuss related
work and background development of the contract formalisms.
Section VIII concludes this paper.

II. PRELIMINARIES

This section introduces assume-guarantee contracts and their
operations. This is the foundation of constraint-behavior contracts,
as explained later.



A. Ports, behaviors, and components

A system interacts with its environment through the values on its
ports. Each port p is associated with a port type that represents the
set of possible values for the port. The system ports are denoted
as P. For example, in the case of a resistor, the system ports
include the voltage V' across it and the current I passing through
it, represented as P = {V,I}. The port types for voltage and
current are the sets of real numbers, denoted R.

A port behavior refers to a finite or infinite successive assign-
ment of values within the port type. The universe of port behaviors,
denoted as B,,, encompasses all possible behaviors of the port. A
system behavior is a finite or infinite successive assignment of
values to the system ports. The universe of system behaviors is
defined as the direct product of the port behavior universes, i.e.,
Bp = Hpep B,.

A component is characterized by a subset of the universe of
system behaviors, denoted as M C Bp, which contains the system
behaviors that the component can produce. For instance, in the case
of a resistor with a resistance of 2 2, a valid behavior could be
(V,I) =(2,1), indicating a voltage of 2 V and a current of 1 A.
Conversely, (V,I) = (2,2) is not a valid behavior for the resistor,
as it violates Ohm’s law.

B. Assume—guarantee contracts

A contract [18] is a formal specification for a system defined by
a pair of component sets (£,7). The environment set, denoted &,
consists of components that could serve as the system’s environ-
ment. The implementation set, denoted Z, comprises components
that can realize the specification. A contract can be represented in
different forms and semantics to express its environment and im-
plementation set. One such representation is the assume-guarantee
contract—see Chapter 5 of [18].

An assume-guarantee contract C*Y represents a contract by a
pair of sets (A, G), where A is the assumption set, and G is the
guarantee set.

The assumption set and guarantee set are defined by the be-
haviors over the system ports P. The assumption set describes
the behaviors of the targeted environments where the designer
expects the system to operate. The guarantee set specifies the
acceptable behaviors the system should produce when operating
under the targeted environment. When the system operates in
an environment behavior not included in the assumption set, its
behavior is not specified, and thus all behaviors are acceptable. As
a result, the acceptable behavior set of a contract C*Y = (A, G) is
G U A. The environment set represented by an assume-guarantee
contract is £ = 24, the powerset of the assumption set, and the
implementation set is Z = 2“4, the powerset of the acceptable
behavior set. The derivation of the environment set can be obtained
by observing that the behavior set of an environment component
must be a subset of the assumption set. For the implementation
set, any component M. that satisfies Mc N A C G is an
implementation of the assume-guarantee contracts according to
the semantics. As a result, the implementation is any subset of
the acceptable behavior set: M¢ C G U A.

An assume-guarantee contract is saturated if it satisfies G U

A = G, meaning that the guarantee set includes all the acceptable

behaviors. Any assume-guarantee contract can be saturated by the
saturation operator

sat,(A4,G) = (A,GUA).

The semantics of the specification remains unchanged, as satura-
tion does not change the environments or implementations of the
contract.

C. Contract operations

Contracts facilitate system reasoning at the specification level
through their operations and relations. This abstraction allows vir-
tual integration without any implementations and is the foundation
of contract-based design [3]. As design problems can be detected
at the specification stage, the preliminary stage in the design
process, the time and cost for design can be reduced by avoiding
manufacturing and deploying components failing to satisfy the
specification.

Refinement is a relation between contracts, and composition is
an important operation for hierarchical reasoning. We give their
formal definitions [18].

a) Refinement: Given two saturated contracts Cy¥Y =
(A1,G1) and C39 = (As2,G2), C37 refines C, denoted by
C1 = Co, if A5 D A; and G5 C G;. Equivalently, we can
say Cy? is a refinement of C}', and C}” is a relaxation of C5Y.
The refinement relation defines a partial order over contracts. The
relaxed contract can be replaced by its refinement without violating
the specification. All implementations based on the refined contract
can satisfy the original contract.

b) Composition: The composition of two saturated con-
tracts, denoted C;Y || C37, can be computed as ((A; N Az) U
(G1 N G3),G1 N G2). The composition of contracts is the overall
system specification considering all the subsystem specifications.
The specification thus moves to a hierarchy for reasoning in the
composed systems instead of individual subsystems.

III. CONSTRAINT-BEHAVIOR CONTRACTS

This section first discusses why assume-guarantee contracts
implicitly impose port directions. Then we introduce constraint-
behavior contracts to address the difficulties that implicit port di-
rections present to physical components. Operations and relations
for constraint-behavior contracts are also introduced.

A. Port sensitivity and implicit port directions

In our discussion of Figure 2 in Section I, we observed that
assume-guarantee contracts may implicitly require port direc-
tions, which makes expressing behaviors in implicit equations
challenging. We analyze the cause of implicit port directions in
assume-guarantee contracts and then present the requirements for
a contract formalism that does not imply port directions.

First, we introduce the notion of port sensitivity.

Definition 1. A set of behaviors A is said to be insensitive to a
port if the behavior of the port does not affect A. If it does then
A is sensitive to the port.

If a port is not used in the expression of the behavior set, the
behavior set is insensitive to the port. For example, considering
a system containing two resistors with resistances R; and Ro,



respectively, the behavior set defined by Ohm’s law V; = I1 R; is
sensitive to the voltage V7 and current /;. On the other hand, the
behavior set defined by Ohm’s law of the other resistor Vo = I3 Ro
is insensitive to the voltage V7 and current I3, as any values of V;
and I; do not affect whether a system behavior is contained by
the behavior set.

When an environment controls all the ports that the assumption
set is sensitive to, the satisfaction of the assumption is determined
by the behavior set of the environment on these ports. Let E denote
the behavior set of the environment. If the environment satisfies the
assumption, the resulting behavior must fall within the intersection
of the behavior of the environment and the guarantees, denoted as
E NG, since an assume-guarantee contract requires the system to
ensure the specified guarantee when the assumption is satisfied.
On the other hand, if the environment violates the assumption,
denoted as £ ¢ A, the system is not required to provide any
guarantees.

However, when some ports that the assumption set is sensitive
to are not controlled by the environment, the satisfaction of the
assumption depends on the behavior of the uncontrolled ports,
which can be any behavior in the universe of the port behavior.
Therefore, the specified component is allowed to produce any
behavior, since the assumptions can be violated by the behaviors
of the uncontrolled ports. The contract thus fails to represent the
components for our purpose because it always contains behaviors
that the component should not produce under the environment.
As a result, assume-guarantee contracts implicitly require the
component to define all ports that the assumption set is sensitive
to as input ports.

In the example shown in Figure 2, the environment E; does
not control the current I; hence, the assumptions in formulations
Cy and C, are sensitive to I. Consequently, these contracts allow
behaviors such as (V,I) = (2,10) because they do not specify
the component when the current values violate the assumptions.
However, the resistor should only produce the behavior (V,I) =
(2,1) when the voltage is 2 V.

Thus, it is necessary to define a contract formalism that allows
us to specify components regardless of which ports are controlled
by its environment. The requirements of such formalism are as
follows:

1) The responsibilities of the components, i.e. the required
behaviors, should be considered before checking the satis-
faction of the working condition. This aspect is the main
difference between specifications using implicit equations and
explicit equations. By considering the responsibility of the
components first, we obtain the possible behavior for the
ports not controlled by the environment, instead of allowing
arbitrary behaviors that may violate the specified conditions.

2) The contracts should have a compact encoding and be easy
to use, similar to assume-guarantee contracts. As the spec-
ification is the initial design stage, designers need to write,
interpret, and examine the specifications. Ease of use and
compactness will enable designers to express their intentions
clearly and identify potential faults effectively.

3) The new contract formalism should seamlessly integrate into
the design flow with contracts having port directions, such as
assume-guarantee contracts. Depending on the application’s

requirements, the designer can define port directions for the
subsystem created by physical components. For example,
in a propulsion system, the control values can be treated
as inputs, while the generated thrust can be treated as its
output. Integration of these specifications allows moving
between different abstraction layers. The overall system can
be specified based on the port directions that reflect its usage,
even if the components do not have port directions.

B. Constraint-behavior contracts

Based on the requirements above, we propose constraint-
behavior contracts as a formalism for specifying physical com-
ponents.

We use constraints and intrinsic behaviors to describe physical
components. The behaviors are the responsibility of the compo-
nent, typically expressed in physical quantities. Constraints define
the conditions under which the behaviors apply. For example, the
resistor of Figure 2 imposes the behaviors V' = I R, but it operates
under the constraints VI < P.

As long as the system behavior following the intrinsic behaviors
satisfies the constraints, the component functions as specified,
producing the behavior according to its intrinsic behaviors. If the
system behavior following the intrinsic behaviors does not satisfy
the constraints, the component fails, and the resulting behavior
becomes unspecified, except for the value controlled directly by
the environment.

We define constraint-behavior contracts and their semantics as
follows:

Definition 2. Let P be the system ports, C' be a set of behaviors
called constraints, and B be a set of behaviors called intrinsic
behaviors. A constraint-behavior contract is a pair of constraints
and intrinsic behaviors denoted as C® = (C, B), where C C Bp
and B C Bp.

The behaviors of a constraint-behavior contract under an envi-
ronment E C Bp are

itt(ENBCC,ENB,E),
where ite() is the IF-THEN-ELSE operator.

The semantics of constraint-behavior contracts differs from that
of assume-guarantee contracts. Observe that the responsibility of
the constraint-behavior contracts is applied first to verify that the
specified behaviors satisfy the constraints, which define the work-
ing condition of the components. This fulfills our first requirement
for the contract formalism for physical components.

The following example shows a constraint-behavior contract for
specifying the resistor in Figure 2 (a):

Example 1. We can write the constraint-behavior contract for the
resistor as C* = (C,, By):

C,:1V <8and B, : V =21

We can verify that its semantics align with our intuition of a
resistor. When the environment provides V. = 2, we apply the
intrinsic behaviors to the environment’s behaviors and observe
that the constraints are satisfied: E N B, = (V,I)=(2,1),
which is a subset of C, = (IV < 8). Thus, the behaviors



of the constraint-behavior contract under this environment are
En B, = (V,I)=(2,1). Similarly, when the environment
provides I = 1, we apply the intrinsic behaviors to the envi-
ronment’s behaviors and find that the constraints are satisfied:
EnNB, = (V,I)=(2,1), which is a subset of C, = (IV < 8).
Therefore, the resulting behavior is EN B, = {(V,I) = (2,1)}.

This example also shows that constraint-behavior contracts can
be applied to environments with different controlled ports.

Constraint-behavior contracts can be expressed as assume-
guarantee contracts:

Proposition 1. A constraint-behavior contract C®* = (C,B)

possesses the same semantics as the assume-guamntee contract
€9 = (CUB, B).

The equivalence of semantics can be shown by using the
contract definitions introduced in II-B. The environment set £
of a constraint-behavior contract consists of any components that
satisfy the constraints when applied to the intrinsic behaviors.
Therefore, £ = {E | EN B C C} = 2°YE. The implementation
set Z of constraint-behavior contracts should satisfy the 7 =
{M |VE € &, M N E C B}, which simplifies to Z = 25. Since
an assume-guarantee contract C*? = (A, G) has an environment
set £ = 24 and implementations Z = 2¢Y4, we can match the
expressions from both semantics to obtain A = CUB and G = B.

The following example shows the corresponding assume-
guarantee for the resistor in Figure 2 (a):

Example 2. The assume-guarantee contract for the constraint-
behavior contract C°, according to Proposition 1, is C*9 = (IV <
8VV £2I,V =2I).

We observe that all behaviors of V' = 2 satisfy the assumption,
as (V,I) = (2,1) satisfies IV < 8, and all other behaviors with
I # 1 satisfy V' # 21. Therefore, the guarantee is always enforced,
and it eliminates all the behaviors satisfying V' # 21. The only
remaining behavior is (V,I) = (2,1). A similar derivation can be
obtained with the environment I = 1.

The example also highlights the counter-intuitive nature of
encoding assume-guarantee contracts for physical components. In
the derived assume-guarantee contract, all behaviors that violate
the guarantee are initially accepted based on the assumption but
later eliminated by the guarantee. The mixture of constraints and
intrinsic behaviors complicates understanding the specification’s
intention, while the numerous illegal and subsequently discarded
behaviors further complicate behavior derivation. Therefore, using
constraint-behavior contracts allows designers to write specifica-
tions in an intuitive way by preserving the physical meaning of the
components without considering the intermediate illegal behaviors.

C. Operations and relations

As introduced in Section II, the contract operations and relation
can facilitate system reasoning at the specification level. To this
end, we discuss the contract operation for constraint-behavior
contracts.

1) Composition: First, we define the composition of constraint-
behavior contracts as follows:

Definition 3. The composition of two constraint-behavior con-
tracts C5® = (C1, By), CS® = (Cy, By), denoted by C5° || CSP, is
a constraint-behavior contract C5 = (C12, B12), where

Cio =C1NCqy and B1s = B1 N Bs.

The intuition of the composition operation is that the constraints
of both contracts should be satisfied at the same time, and the
intrinsic behaviors of both components are in force simultaneously.

We can show that the composition operation for constraint-
behavior contracts aligns with the composition of assume-
guarantee contracts. Considering the corresponding assume-
guarantee contracts C;Y = (A;,G1) = (C1 U By, By) and CyY =
(Az,G) = (Co U By, By), we can use assume-guarantee contract
composition to show that the composition result is equivalent to
the one obtained following Definition 3:

Cyg =07 | CF
= ((A1NA) UG UGy, G1 NGY)
= (((Cy UBy) N (CyU By)) U By U By, By N By)
= ((Cy N Cy) U (B1 N By),B1 N By)
= (C12 U Bia, B12),

which is the corresponding assume-guarantee contract of the
composed constraint-behavior contract C{5.

The following example illustrates the composition of two resis-
tor specifications when the resistors are in parallel:

Example 3. Consider the two contracts C{* = (Cy1, B,1) and
CS® = (Cya, By2) for two resistors, where Cpy : LV < 8, By :
V =26, Cry: LV <16, and B,y : V = 415. The composition
is Cig = (Crlg,Brlg), where Cp12 is (IlV < 8) A\ (IQV < 16)
and B,15 is (V = 2]1) AN (V = 4[2).

When the environment provides the voltage V = 4, the resulting
behavior is (V, I, 15) = (4,2,1).

2) Refinement: We define the refinement relation of constraint-
behavior contracts:

Definition 4. Given two constraint-behavior contracts C{® =
(C1, By) and CS® = (Ca, Ba), CSP is a refinement of C5®, denoted
as C§{* = CSP, if they satisfy the following relation:

& UEECQ UE and By C Bj.

Similar to composition, we can show that the notion of re-
finement for constraint-behavior contracts aligns with assume-
guarantee contract refinement. Consider their corresponding
assume-guarantee contracts C1? = (A;,G4) = (C1 U By, By) and
Cy? = (Aa,G2) = (C2 U Bs, By) and suppose they satisfy the
refinement relation ;Y = C57. Using assume-guarantee contract
refinement as in Section II, the refinement relation requires that
the following conditions hold:

CiUB; = A; CAy=CyU By, By =G2C Gy = By

which is the same condition as the condition for constraint-
behavior contract refinement.

Here we show an example of the contract refinement based on
Example 3:



Example 4. We want to check if the composition result in Exam-
ple 3 is a refinement of the system contract C&4 = (Cy3, By3) =
(L + L)V <12,V = 5(L + I2)).

First, we check if the intrinsic behaviors satisfy the condition
B.12 C By3. By denoting any element in R.15 as (V,11,15) =
(v, 3V, %V), the element must also be an element in R,3 since
V= §(§V+ iV). Therefore, we get Ry1o C Ry,3. This derivation
is equivalent to the derivation of the equivalent resistance for
parallel resistors: r3~ ' = r1 7! + o7, where r5 = %, ry =2,
and ro = 4 are the resistances of the resistors.

Then we check if the constraints satisfy the relation in Defini-
tion 4. We first get Cr.12UB10 = (LV < 8)A(LLV < 16)V(V #
21) vV (V # 41,). An element in Crg = (I + 12)V < 12 is an
element of Cr12 if V # 211 or V # 415. Therefore, we only need
to check if all elements satisfying V = 21y and V = 415 in C\.3 are
elements of (I,V < 8) A (I,V < 16). Using the relation between
voltages and currents, we know the ratio between 11V and 1oV
is always 2. Therefore, from (I1 + I2)V < 12, the maximum value
of IV is 8, and the maximum value of I,V is 4, which satisfies
(IlV < 8) A (IoV < 16), and thus Cr3 C Cr13 U Byryo.

Then, as B2 C B3, we get B.3 C B,15 and B3 C Cpyo U
B,12. Combining the results, we get Cr3 U Brg C Cr12 U Bp1o,
which means the refinement relation holds.

The refinement relation in the example shows that the composed
resistor has the same equivalent resistance but a larger range
of working regions than the system specification. As a result,
the implementation based on the refinement result never fails if
the environment always satisfies the specification of Bjs. In this
example, we can intuitively understand the intrinsic behaviors
using the parallel resistance, but not for the constraint, i.e., the
maximum power. If the system r3 requires a higher maximum
power than 12, the refinement does not hold, as the maximum
power constraint of r; could be violated.

IV. CONSTRAINT-BEHAVIOR CONTRACTS AND
ASSUME-GUARANTEE CONTRACTS

Constraint-behavior contracts and assume-guarantee contracts
have different semantics and usage while they share some sim-
ilarities in their forms and operations. As introduced in Propo-
sition 1, every constraint-behavior contract has an equivalent
assume-guarantee contract. Furthermore, the refinement relation
and the composition operation of constraint-behavior contracts
can be derived from assume-guarantee contracts, though having
a slightly different form. This section discusses the similarities
and differences between constraint-behavior contracts and assume-
guarantee contracts.

A. Semantic and practical usage

Both constraint-behavior contracts and assume-guarantee con-
tracts are defined as a pair of behavior sets 257 x 257 However,
the two contracts have to be understood and used differently
in practical applications for the same behavior sets. In assume-
guarantee contracts, the assumption directly specifies the envi-
ronment behaviors where the component is expected to function,
and the guarantee states the component’s responsibility in those
environments. The assumption checks the working conditions
independently of the contract’s guarantee. On the other hand,

constraint-behavior contracts describe the relationship between
ports through intrinsic behaviors, with constraints indicating the
conditions under which the established relationship no longer
holds. In this case, both the intrinsic behaviors and constraints
are involved to derive the uncontrolled part behavior and check
the satisfaction of the component’s working conditions.

The semantics define different orders for applying the behavior
sets, which results in different practical usage. As shown in
Section III-A, the implicit port directions from the interpretations
of the assume-guarantee contracts make it hard and counter-
intuitive to specify physical components.

We refer to these two interpretations of the behavior sets as the
assume-guarantee contract semantics and the constraint-behavior
contract semantics.

B. Equivalent saturated form in both semantics

According to the refinement relation, we can define the satura-
tion of a constraint-behavior contract to reason about the partial
order between the contracts:

Definition 5. The saturation of a constraint-behavior contract,
denoted by the operator sat.(), is defined as

sat,(C, B) = (C U B, B).

The saturation results in a maximal contract, based on partial
order defined by refinement, which represents the same specifica-
tion.

A saturated constraint-behavior contract denotes the same spec-
ification as the saturated assume-guarantee contract of the same
form, meaning that the interpretation results of the two semantics
are common for saturated contracts. We can denote a saturated
constraint-behavior contract as C® = (C,B) = (51,52) and a
saturated assume-guarantee contract C*9 = (A,G) = (S51,52),
where S7 and S, are behavior sets.

In the following, we show their equivalence. First, we show that
any pair of behavior sets (S7,.52) being a saturated constraint-
behavior contract is also a saturated assume-guarantee contract
under the assume-guarantee contract semantics, and vice versa:

Lemma 1. Given a pair of behavior sets (S1,S2) € 287 x 287
Sg :SQU51 ifandonly l:fSlUSQ :Sl.

Proof. SQU571252<:>571g52<:>572g51<:>51U572:
S1. O

Therefore, any saturated constraint-behavior contract is also a
saturated assume-guarantee contract if we interpret its pair of
behavior sets in the assume-guarantee contract semantics.

Then we show that the saturated contracts in the two semantics
represent the same specification using the mathematical meta-
theory of contracts [18].

Proposition 2. Given a pair of behavior sets (S1,S2) € 257 x
287 if Sy = S9US), then the pair expresses the same specification
under the constraint-behavior contract semantics and the assume-
guarantee contract semantic, i.e., specifying the same sets of
environments and implementations.




Proof. First, we show that the two semantics result in the
same environment set: £ = {Fe€Bp|ENSy C S} =
{E|ECS5US;=8}=2%=¢%.

Then we show that the two semantics represent the same
implementation set: Z¢ = {I C By ] VE €& INECS,}
= {ICBy|INSICS} = {ICBy |ICSUS} =
292U51 — 799 where the second equality is obtained by E C S,
since £ = 2% Therefore, the two semantics on the pair of
behavior sets express the same specification since they specify
identical environment and implementation sets. O

This property allows us to derive the formula for operations of
constraint-behavior contracts, like the derivation in Section III-B.
Furthermore, algorithms based on saturated assume-guarantee con-
tracts can be applied to saturated constraint-behavior contracts,
allowing integration of the two contract semantics.

C. Unsaturated composition with set intersection

The previous parts detail the close relationship between assume-
guarantee contracts and constraint-behavior contracts. However,
the constraint-behavior contracts have a property that the assume-
guarantee contracts do not have: the same composition formula
for saturated and unsaturated constraint-behavior contracts.

The composition in Definition 3, which involves only simple
set intersections, does not require the contracts to be saturated,
and the resulting contract might also be unsaturated. However,
assume-guarantee contracts do not possess a similar property. The
composition formula introduced in Section II cannot be applied
to unsaturated assume-guarantee contracts. Consider unsaturated
contracts C1¥ = (A1, G1) and C3? = (As, G2), where A1, Gy, As,
and G4 are unconstrained sets. We can obtain their composition
as follows:

C17 |1 €57 = satyy (C17) | satag(C5?)
= (A1, Gy UAY) || (A2, G5 UA)
= ((A1NA)U(GINA)U(GeN Ay),
(G1 ) E) n (G2 ) IQ))
Note that no further simplifications can be made since all sets
are unconstrained. Observing the obtained composition formula,
the composition of unsaturated assume-guarantee contracts still
involves the saturation operation such as G;UA; and GoUAs. On
the other hand, constraint-behavior contracts have a common com-
position formula for saturated and unsaturated contracts. Consider-
ing two unsaturated contracts C{* = (C1, B;) and C§* = (Ca, Ba),
where C1, B, Cs, and By are unconstrained sets, we can obtain
their composition as follows:
Clljb ”cb Cgb = Satcb(cfb) ” Satcb(CEb)
= (Cl U By, Bl) || (CQ U Bs, Bg)
= (((CLUBy) N (C3 U By)) U By U By,
B1 N By)
=(((CinCy) U (Bl N Bs), B; N By)

= Satcb(cfb ||(:b Cgb)v

where we first saturate the constraint-behavior contracts to get
their equivalent assume-guarantee contacts and then perform the
assume-guarantee contract composition.

As a result, constraint-behavior contracts can be composed
simply by set intersection, even though they are unsaturated.
This property also demonstrates the ease of use of our proposed
constraint-behavior contracts. The composition is straightforward
and intuitive for designers to express their intentions and identify
potential faults.

V. VERIFICATION USING CONSTRAINT-BEHAVIOR CONTRACTS
AND ASSUME-GUARANTEE CONTRACTS

By comparing constraint-behavior and assume-guarantee con-
tracts, we have shown the possibility of integrating contracts
from different semantics into the contract-based design process.
Based on this, this section introduces a verification methodology
that utilizes constraint-behavior contracts and assume-guarantee
contracts.

Depending on the application’s need, a system may be specified
with clear port directions while the underlying components can be
expressed using implicit equations. In this case, the designers may
choose assume-guarantee contracts to specify the system while uti-
lizing constraint-behavior contracts for its components. Therefore,
a verification methodology for such an integration is necessary, as
verification of these specifications requires the refinement relation
to be established under different contract formalisms.

With Proposition 2, we can derive the refinement relation and
verify system specification for this case. First, we show the con-
ditions for contract refinement for an assume-guarantee contract
and a constraint-behavior contract as follows:

Definition 6. Given a constraint-behavior contract C** = (C, B)
and an assume-guarantee contract C*9 = (A, G). C° refines C*9,
denoted as C°® < C%9, if the following condition is satisfied:

ANBCCNG.

The intuition behind the definition is to ensure that all intrinsic
behaviors under the specified environments (A N B) result in
behaviors satisfying the constraints of the components and the
system guarantees (C' N G).

We can use Proposition 2 to show that the definition aligns
with saturated contract refinement. First, we define the assume-
guarantee contract C3Y = (C U B, B), which expresses the
same specification as C°®. According to assume-guarantee contract
refinement, the conditions for contract refinement are A C C U B
and B C GUA. By rewriting A C CUDB, we obtain the equivalent
condition AN B C C. Similarly, rewriting B C G'U A yields the
equivalent condition A N B C G. Combining these two results,
we get AN B C C NG, which aligns with the defined refinement
relation.

Here we sketch a verification process integrating constraint-
behavior contracts and assume-guarantee contracts using the con-
tract refinement as follows: first, the designer specifies the system
requirement in assume-guarantee contracts. Then the designer
gathers the component specifications written in constraint-behavior
contracts and assume-guarantee contracts. After gathering all the
contracts, the composed contract is computed by applying contract
composition to the component contracts. Finally, the designer
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Fig. 4: System Diagram of a UAV propulsion system with four
propellers.

can verify the system by checking contract refinement following
Definition 6.

VI. DEMONSTRATION: UAV ELECTRICAL SYSTEM DESIGN

To demonstrate the effectiveness of constraint-behavior con-
tracts in addressing design problems with physical components,
we apply them to a UAV propulsion system verification problem.
The system specification includes two requirements: 1) the UAV
must tolerate the maximum voltage of the batteries, and 2) the UAV
must be able to stay in the air for a given time ¢_req. The demon-
stration involves formulating constraint-behavior contracts for the
components and utilizing the verification process that combines
constraint-behavior contracts with assume-guarantee contracts.

A. System details

The UAV propulsion system is a heterogeneous system spanning
the electrical, mechanical, and control domains. Figure 4 shows the
system overview. The components in the UAV propulsion system
with NV propellers include a battery pack, N motors, N propellers,
a battery controller, and a battery control algorithm [19]. Each
individual component of the same type may have a different
component model, which has the same ports while the behaviors
are different based on the parameter values of the component
model. In the following, we detail each component.

o Battery. The battery provides electrical power to the propul-
sion system. A battery has four ports: Cyatt, Tpatts Voatt, and
Whatt- Port Chey indicates the maximum capacity. Ipqe iS
the battery current. V344 is the battery voltage. Wi,y is the
weight of the battery.

o Motor. The motor converts the electrical energy from batteries
to mechanical energy. The motor has five ports: V;, I;, 7;, w;,
and Wiy,ot0r,i- The subscript 4 denotes the ith component in
the system. Port V; is the voltage across the motor. [; is the
current passing through the motor. 7; is the torque of the
motor. w; is the angular velocity of the motor. Wiy, ot0r,; 1S
the weight of the motor.

e Propellers. The propeller produces thrust, an upward force for
the UAV to fly against gravity. A propeller has five ports: 7;,
w;, T;, p, and Wiy,op ;. Port 7; is the torque of the propeller.
w; is the angular velocity of the propeller. T; is the thrust
generated by the propeller. p is the air density. W,..p; is the
weight of the propeller.

e Battery Controller. The battery controller determines the
power drawn from the batteries and its distribution to the

motors. A battery controller contains 3N + 2 ports: Vg,
Tyaie, u;, Vi, and I;, for all ¢ = 1 to N. Port Vg, 1S the
voltage from the battery. Port I, is the current from the
battery. Ports wu,; are the control inputs indicating the ratio
between V; and Vjq4:. V; is the electromotive force provided
by the controller. I; are the current sent by the controller.

o Control Algorithm. A control algorithm applies a strategy to
control the battery controller such that the UAV can fly to
achieve the design goals. Ideally, a control algorithm should
send the control signal based on the status of the UAV.
However, as we do not focus on the control algorithm in
this demonstration, the status can be abstract as any possible
values. As a result, the control algorithm contains NV ports: u;
for ¢ = 1 to N, where wu; is the control value for the voltage
to the motor.

B. Contract formulation

As outlined in Section V, the designers first specify the sys-
tem requirements in assume-guarantee contracts and gather the
component specifications in constraint-behavior contracts. Here we
show the contract formulation for the system requirements and
individual components.

1) System contract: The first system requirement indicates the
UAV must be able to fly, i.e., not crash onto the ground, at the
maximum battery voltage. Therefore, we can write the assume-
guarantee contract Cj), = (Ayiy, Griy) as follows:

Afty

p=1.225
W, = Wbattery + Wbody+

n

Z(Wprop,i + Wmotor,i)
i=1

Ts = Z?:l T;

U; = 1 VZ =1...n

G iy
Ts > W,

The assumption sets the air density, defines auxiliary variables
for total weight and thrust, and then sets the control output to 1 to
operate the UAV at the maximum battery voltage. The guarantee
requires that the thrust exceeds the weight, preventing the UAV
from crashing onto the ground due to insufficient thrust. In the
formulation, W,q, is a parameter for specifying the weight of
the UAV frame and its payload.

The second system requirement indicates that the UAV can stay
flying for at least t_req seconds before depleting the battery power.
Thus, we can formulate the assume-guarantee contract Cf_gmq =
(Ai_req, Gt_req) for this requirement as follows:

At_'r‘eq

p=1225
Ws = Whattery + Whody+

Z (Wpro;mi + Wmotoni)

Gt_req

Chatt
Tpats < et

—
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The assumption sets the air density, defines auxiliary variables
for total weight and thrust, and then ensures that the thrust is
equivalent to the weight to maintain hovering. The guarantee re-
quires that the current withdrawn from the battery can continuously
supply power for at least ¢,., seconds before depleting its stored
energy.

2) Component contract: After formulating the assume-
guarantee contracts for the system requirements, we proceed to
specify the behavior of the components by listing the constraint-
behavior contract formulations.

a) Battery: The contract for a battery of the component
model b, denoted as legtt’b = (Chatt,bs Bpatt,p), is formulated as
follows:

Chatt b Byatep

Ibatt < ]maz,b Cbatt = C'b
Vbatt = ‘/b
Whatt = Wy

In the above equations, the following parameters are constants
specified by the battery model: I,,,4, 1 is the maximum allowable
current, Cj, is the capacity, V}, is the voltage, and W, is the weight
of the battery model.

b) Motors: The contract of a motor of the component model
m with index 4, denoted as C®

motor,m,i (Omotor,m,i7 Bmotor,m,i)7
is defined as follows:

Bmotor,m,i

V,ﬁwi
IiBw,m =K

v,m

Cmotor,m,i
‘/’LI’L < Pma:z:,m
Ii < Imaac,m

Kom "
Ti = B (‘/Z - meL X Iidle,m K )

w,m v,m
Wmotor,i = Wm

In the above equations, the following parameters are constants
specified by the motor model: Py, m is the maximum allowable
power, B, », is the internal resistance, K, ,, is the motor velocity
constant, ;g ., is the idle current, K, ,, is the motor torque
constant, and W, is the weight of the motor model.

c) Propellers: The contract of a propeller of the component
model p with index i, denoted as C®

prop,p,i (CPT'OP;P;i7 Bprozup,i)?
is defined as follows:

Cpmp,p,i Bpmp,p,i

2 5
pClhp,iw; XDy

True T, = O
T — pCtYiwiXDt
T (2m)2
(093 Z 0

CP-,i € [Opmin,pa Opmﬂfﬂ-ﬁ}
Ct,i € [Ctmin,p; Ctmar,p]
Worop,i = Wp

In the above equations, the following parameters are constants
specified by the propeller model: D,, is the propeller diameter,
Cpmin,p and Cppaq p define the range of the power coefficient,
Cimin,ps Ctmaz,p define the range of the thrust coefficient, and
W, is the weight of the propeller model.

d) Battery Controller: The contract of the battery con-
troller for battery controller model ¢, denoted as ngtcont’c =
(Chatcont,cr Boatcont,c). 1s defined as follows ( €.¢¢ is the con-
version efficiency of the battery controller):

Bbatcont,c

n
Ibatt = €eff,c Zi:l Iz
Vi = Uivbattery

Cbatcont,c

Vmotor,i < ‘/battery Vi=1..n

e) Control Algorithm: As we abstract sensors and all states
of the UAYV, the control output can be any value between 1 and
0. The value denotes the ratio of the battery voltage sent to the
motor. For example, a control output of 0.4 and a battery voltage
of 22.2V means the motor gets 8.88V. Therefore, the contract of
the control algorithm, denoted as C<%,, = (Ceont, Beont) is defined
as follows:

Ccont

True

Bcont
u; € [0,1]Vi=1..n

C. Designs for verification

The benchmark designs for verification are based on five designs
developed under the DARPA SDCPS project [20]. Among the
designs, Designs 1 and 3 are manually designed quadcopters, while
the remaining designs are randomly generated by specifying a
random number of components and assigning random component
models. Table I provides a summary of the statistics of the designs
and component models used in each design.

D. Verification settings and results

We implemented the verification process of contracts using the
SMT solver Z3 [21] in the Python programming language, with
polynomial arithmetic as the background theory. For designs with
multiple batteries, we modify the contract by multiplying the
capacity and weight by the number of batteries and dividing the
maximum current by the number of batteries, assuming a parallel
connection of the batteries. The parameter ¢,.., was set to 200s, and
Whiody Was set to 19.62N for all benchmark designs. The results
of the verification, including the parameter settings, verification
outcomes, and reasons for not passing the requirements, are
summarized in Table II. The reason for not passing is obtained
by analyzing the counter-example provided by the solver.

The verification results show that Designs 1 and 5 passed both
design requirements, while Designs 2, 3, and 4 violated at least
one of the requirements. Design 2 exceeded the maximum power
constraint of the motor, resulting in a violation of the guarantee

in C},. Design 3 failed to provide sufficient thrust to lift the
UAV, thus violating the guarantee of the contract Cf_ﬁneq. Design 4

required a current greater than the specified value and, as a result,
failed to provide guarantees in the contract Cf_greq to maintain
hovering for the required period.

E. Discussion

The constraint-behavior contracts enable contract formulations
using implicit equations without considering the port directions.
This prevents the need to solve implicit equations, reduces the
size of the contract library, and provides an intuitive encoding.



[ [[ #motor [ #battery | Propeller Model [

Motor Model [ Battery Model |

Designl 4 3 apc_propellers_17x6 t_motor_AT4130KV300 TurnigyGraphene6000mAh6S75C
Design2 4 2 apc_propellers_16x6E t_motor_AT4130KV230 TattuPlus15C16000mAh12S 1 Pcompact
Design3 4 2 apc_propellers_6x4E t_motor_AT2312KV 1400 TurnigyGraphene1000mAh2S75C
Design4 6 3 apc_propellers_20x10E t_motor_AT4130KV230 TurnigyGraphene1400mAh4S75C
Design5 4 1 apc_propellers_11x4_6SF | kde_direct KDE700XF_535_G3 TattuPlus25C22000mAh12S1PAGRI

TABLE I. The statistics of the benchmark designs, including the number of batteries in the battery pack (#battery), the number of
motors (#motors), and the component models for propellers, motors, and batteries.

l H t_req [ Whody [ C?fy [ Cf_greq [ Reason ‘
Designl 200s | 19.62 N O [0)
Design2 200 s 19.62 N X - P_motor violated
Design3 200 s | 19.62 N X - Not enough thrust
Design4 200 s | 19.62 N (6] X Low capacity
Design5 200 s | 19.62 N (6] (¢}

TABLE II: The requirement parameters ({_req and Wy,q,) of the
UAV and the verification result. The second contract is denoted as
“~ if the fly requirement is not met as there is no need to verify
the requirement.

For example, let’s consider the contract Cf,fotonm)i. To verify the

first requirement, the motor’s input should be the voltage V; since
the requirement implies that the control parameters are system
inputs, which directly control the motor’s voltage. On the other
hand, to verify the second requirement, the motor’s inputs should
be the ports connected to the propeller, namely w; and 7;, as the
requirement indicates that the thrust is a system input.

By using the constraint-behavior contract for motors, these two
requirements can be directly verified without the need to solve
implicit equations involving w;, I;, and V; for various inputs.
Additionally, it eliminates the need to store different contracts for
the same components solely based on different port directions. As
a result, the number of contracts is reduced and independent of
the combination of port directions. Furthermore, implicit equations
enable designers to formulate contracts using their physical intu-
ition, as the component modeling in [19]. This capability helps
prevent specification faults and makes it easier for designers to
identify mistakes.

Overall, the demonstration shows the contract formulation,
verification process, and the benefits of using constraint-behavior
contracts over assume-guarantee contracts.

VII. RELATED WORK

The concept of a contract originated in software engineer-
ing, specifically in the context of specification and verification.
Meyer [22] introduced the term “contract” in software engineering,
making an analogy to business contracts between the caller of a
function and the function being specified. In the methodology,
preconditions and postconditions differentiate the responsibilities
between the caller and the program method. This methodology
was later applied to cyber-physical design for system verification
and hierarchical reasoning due to its similarities with concurrent
programs. Abadi er al. [23], [24] represented specifications as
assumptions and guarantees for transition systems and introduced a
composition principle for assume-guarantee specifications. Build-
ing on this, Sangiovanni-Vincentelli et al. [3] developed the
contract-based design methodology, which leverages contracts in
platform-based cyber-physical system designs.

In the fields of software engineering and cyber-physical sys-
tems, various contract formalisms have been proposed. Assume-
guarantee contracts [10] use assumption and guarantee sets, similar
to preconditions and postconditions, to define the responsibilities
of the environment and the component, respectively. This formal-
ism has been extended for optimization of controller designs [25],
stochastic systems [26], and hyperproperties [27]. Rely-guarantee
reasoning [28] extends the concept by adding rely-conditions
and guarantee conditions for concurrent programs, where rely-
conditions account for changes of global states made by other
processes and guarantee conditions define the changes of the global
states the programs can make. Input-Output automata [29] describe
a component using states, an initial state, actions, and transition
relations. The transition relation ensures a property called input-
enabled, meaning that every input action is acceptable in any
state. Interface automata [30] are an extension of Input-Output
Automata that do not require the transition relation to be input-
enabled, allowing the separation of responsibilities between the
environment and the component. Despite their diverse forms and
applications, these contract formalisms are elegantly expressed in
a unified algebraic theory by Benveniste et al. [18]. We refer
interested readers to the monograph for the detailed mathematical
definition of contracts and the connections between the contract
formalisms mentioned above.

However, most contract formalisms, except for assume-
guarantee contracts, explicitly require port directions, assuming
receptive systems. Although assume-guarantee contracts are more
general, the implicit port directions make it counter-intuitive to
express assumptions as implicit equations containing all ports.
Therefore, this work presents an intuitive approach for specifying
physical components in implicit equations without the need to
solve the equations based on port directions.

VIII. CONCLUSION

We have presented constraint-behavior contracts as specifica-
tions for physical components in cyber-physical systems. Unlike
assume-guarantee contracts, the intuitive implicit equations in
the constraint-behavior contract eliminate the need for equation
solving and reduce the number of required contracts. With the
developed properties, the proposed verification process can inte-
grate specifications in constraint-behavior contracts and assume-
guarantee contracts. The demonstration based on the UAV propul-
sion system design problem has provided examples of contract
formulation, the verification process in an actual design problem,
and the benefits brought by the capability of implicit equations.
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