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Abstract—Complexity and heterogeneity are fundamental chal-
lenges for system design, as they prolong the design process
and increase its cost. Independent design is a promising design
flow to address these challenges whereby a supplier can develop
its component without exchanging system-level information with
other suppliers. Recent research on assume-guarantee contracts
and contract-based design has focused on algebraic concepts,
such as refinement and composition, to achieve independent
design. However, the conventional definition of assume-guarantee
contracts may result in implementations that may not oper-
ate correctly in the targeted environment of the system, thus
hindering independent design. In this paper, we introduce the
concept of contract replaceability, a binary relation on contracts
that prevents this problem. We then extend the requirements
to include receptiveness as a constraint on assume-guarantee
contracts to ensure strong replaceability. The properties derived
from the constraints ensure that strong replaceability is satisfied
under contract refinement and cascade composition. Thus any
assume-guarantee contract that satisfies this constraint permits
independent design.

I. INTRODUCTION

As the needs for large-scale systems, such as autonomous
driving, industry 4.0, and artificial intelligence-based applica-
tions, increased over the last decades, complexity and het-
erogeneity have become the main challenges that prolong
the design process and increase its cost [24], [25]. Several
methodologies and algorithms have been proposed to cope
with design complexity and heterogeneity in all design aspects
including specification, verification, and synthesis [7], [20],
[21], [25]. Among them, design specification is crucial, as
it is the first stage in a rigorous design flow. Methodologies
for design specification affect efficiency in verification and
synthesis, the subsequent stages of a design flow.

Contract-based design [19], [25] tackles complexity and
heterogeneity coupled with platform-based design and formal
specifications and thus has become a promising candidate
for facilitating complex and heterogeneous design. Contracts
are formal specifications [4] for the design environment and
its implementation. Contract-based design is a methodology
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Fig. 1: Overview of the independent design flow.

that utilizes contracts in platform-based design. It applies
refinement and abstraction to reduce complexity and separates
orthogonal viewpoints, or aspects, of a design to handle the
heterogeneity of the design [3]. Among many formalisms,
assume-guarantee contracts, consisting of an assumption set
and a guarantee set, are attractive in research because of
their ease of use. The close-formed formulas of the assume-
guarantee contract operations, such as composition and quo-
tient [14], [23], have been derived to facilitate contract-based
design.

Independent design [4] is a benefit brought by contract-
based design. It allows earlier verification of the system and
protects the trade secrets between designers and suppliers. In
the independent design paradigm, system-level specifications
are refined with more detailed information and decomposed
into multiple parts where the composition of these parts
satisfies the system-level specifications. The refinement and
decomposition ensure that the system meets the top-level
requirement once each part follows its local specification.
Every supplier thus can independently develop the part under
its specification without the system-level specifications or
coordination between the suppliers. As a result, the paradigm
captures design faults at the specification stage to avoid costly
and time-consuming redesign processes and protects the high-
level design ideas from leaking to the suppliers, which might
be different companies.

Fig. 1 shows the ideal flow of independent design. First, the
top-level specification for the product is decomposed into the
specifications of multiple subsystems or parts. These specifi-



cations of the parts are sent to different suppliers proficient in
the domain knowledge to design and provide implementations
for the parts. These suppliers can refine their specifications,
add more detailed information to the specification, or further
decompose the part specification into more part specifications
and then delegate them to subsequent suppliers for imple-
mentation. After a provider completes an implementation,
the implementation is sent back to the system integrator and
composed into the target system.

However, the machinery of assume-guarantee contracts does
not rule out that the implementations generated for systems
or components may not operate correctly in their targeted
environments. These implementations, which we call vacuous
implementations, have empty sets of behaviors in the tar-
geted environment (i.e., not compatible with the environment).
Therefore, vacuous implementations should be avoided in the
independent design flow. As these vacuous implementations
are not excluded from the standard contract framework, ad-
ditional requirements and constraints enforced on contracts
are required to support independent design using assume-
guarantee contracts.

In this work, we investigate the requirements and additional
constraints on assume-guarantee contracts to provably avoid
vacuous implementations. Our contributions are the following:

o We identify the vacuous implementation problem as an
obstacle to the independent design paradigm. To the best
of our knowledge, this is the first work that discovers and
addresses this problem of the application of the contract-
based design methodology to independent design.

o We introduce replaceability, a binary relation, as a suf-
ficient condition to prevent the vacuous implementa-
tion problem. A refinement of a contract that follows
replaceability is guaranteed to contain implementations
compatible with the contract.

o We then introduce strong replaceability, a transitive bi-
nary relation, as a restriction on refinement to prevent
the vacuous implementation problem in successive refine-
ment steps and enable the independent design. Strong
replaceability relieves the need for system contracts to
enforce the requirement of replaceability. Once each
refinement step follows strong replaceability, the result-
ing contract must follow replaceability with the system
contract.

« We introduce the concept of receptiveness as a property
of assume-guarantee contracts. We show that receptive-
ness is sufficient to ensure strong replaceability, and the
independent design paradigm is permitted on receptive
contracts for refinement and cascade composition.

The remainder of the paper is organized as follows: Sec-
tion II introduces assume-guarantee contracts. Section III
describes the vacuous implementation problem and formulates
the contract replaceability requirement. Section IV proposes
the notion of contract receptiveness. Section V and Section VI
show that contract receptiveness ensures strong replaceability
in refinement and cascade composition, respectively. Finally,

Section VIII concludes the paper.

II. PRELIMINARIES

This section introduces the elements in assume-guarantee
contracts, the contract-based design methodology, and their
background.

A. Variables, Behaviors, and Projections

A system specification defines its interaction with the
external environment. The interaction is represented by the
behaviors over the variables of the system.

a) Variables: For our purposes, the variable is the port of
the system that interacts with the external environment. Each
variable is associated with a variable type, the set of values the
variable can take. The collection of all variables in the system
is the variable set of the system, denoted by V. For example,
a logical AND gate with input ports a and b, and output port
¢ has the variable set V' = {a, b, ¢}, and the variable types for
a, b, and c are the Boolean domains B.

b) Behaviors and Components: A behavior is a suc-

cessive assignment of values to the variables in the sys-
tem. Take the logical AND gate for example, (a,b,c) =
(T,T.T),(T,F, F),
(F,F,F)... is one behavior. To simplify notation, in our
examples, we will denote behaviors statically, i.e., taking con-
stant values for all time steps. However, all of the definitions
and properties used throughout the paper can be applied to
arbitrary behaviors.

For a variable v € V, we denote the universe of the
behaviors over the variable v by 5,. The universe of system
behaviors over the variable set V, represented as By, is defined
by the direct product of the universe of behaviors for all system
variables, i.e., HUEV B,. For example, the universe of the
behaviors over the variable set of the logical AND gate is
By = B3,

A component M C By is a set of behaviors. We understand
the component as containing the behaviors that one can ob-
serve from it. The behavior set can be expressed as a predicate
over the variables. All behaviors leading to the truth value of
the predicate belong to the behavior set. In the logical AND
gate example, the behavior set is {(a,b,c) € B | a A b= c}.
If the variable set is well-known in the context, we can express
the behavior set using only the predicate: aAb = c. Elaboration
on these syntactic issues can be found in Chapter 7 of [12].

The composition of two components M; and My is the
intersection of both behavior sets M;NMs>. We understand this
intersection as the simultaneous enforcement of the constraints
imposed by M; and Ms on the system’s behaviors. In other
words, the composition of two components can be represented
as the conjunction of their predicates (i.e., constraints).

¢) Projections of Behaviors: We will often need to map
behaviors to behaviors defined over a different set of variables.
To define this map, we first define the behaviors restricted to
a single variable v € V.

Let e € By be a behavior and v € V', we denote e, as the
behavior restricted to the variable v.



Here we define the projection of behaviors. Let V' and V'
be two variable sets and By C By be a set of behaviors
defined in V", the projection of behaviors By to variables V'

is as follows:
{6 € By

Each behavior e after the projection corresponds to some
behavior ¢/ € By, sharing the same assignments for the
common variables and having arbitrary assignments for the
variables not in V',

Take the logical AND gate as an example again,
the projection of its behavior to variables {b,c} is
{(b,c) € B? | =c V b}. Consider another example of the re-
moval of a variable and the inclusion of an additional vari-
able at the same time. If we are considering the system
which contains an additional input d that is unrelated to
this logical AND gate, the projection to variables {b, c,d} is
{(b,c,d) e B? ’ —cV b}

Regarding notation, if e is a behavior, we will sometimes
write Iy (e) to mean ITy ({e}). Similarly, when IIy (e) is a
singleton, we will sometimes use IIy (e) to denote the element
it contains. In those cases, we may see statements such as

Iy ({e}) € By

B. Assume-Guarantee Contracts and Contract-Based Design

3¢’ € By (VvweVnV'ie, =€, A
(VoeV\V'e, eB,)

Oy (Bvr)

An assume-guarantee contract C, as a formal specification
for a system, is a pair of behavior sets (A, G), where A is
the assumption set, and G is the guarantee set. Both behavior
sets share the same contract variable set V[, the collection
of all ports in the system. The assumption set specifies the
targeted environments where the system is expected to operate.
The guarantee set describes the acceptable behaviors when
the system operates under the targeted environment. When
the system operates in an environment not specified by the
assumption set, all behaviors are acceptable. As a result,
the acceptable behavior set of a contract C (4,G) is
G U A. An implementation of the contract is a component
M which meets the contract. Therefore, the behavior set of
an implementation must satisfy Mc N A C G, and it is thus
any subset of the acceptable behavior set: M C G U A.

A contract is a saturated contract if it satisfies GU A = G,
meaning that the guarantee set includes all the acceptable
behaviors. Any contract can be saturated by replacing C =
(A,G) with (A,G U A). The semantics of the specification
remains unchanged, as saturation does not change the accept-
able behaviors.

Contract-based design is a design methodology that spec-
ifies a system using contracts and exploits the theory of
contracts to operate on the contracts during the design process.
The refinement and the composition are the main operations
in contract-based design. The refinement increases the details
of the specifications, and composition integrates multiple
subsystem contracts into a contract for the entire system.
The contract-based design process is as follows: First, the
designers specify a system-level contract to reflect the goal

}

of the design. The contract is then refined and decomposed
into multiple subsystem contracts whose composition refines
the original contracts. The process continues until the detail
of the contract for each subsystem is sufficient for actual
implementation, such as a circuit layout, a CAD model for
a mechanical part, and the control parameters for a controller
design. The contract-based design leverages this hierarchical
flow and abstraction of the system to tackle design complexity
and capture design faults earlier to avoid long design cycles.

The assume-guarantee contracts support the composition
and the refinement for contract-based design using the set
operations [25]. A contract C; = (A, G1) is a refinement
of an abstract contract C; = (As, G2), denoted by Co > (4,
if A3 O Ay and G; C Ga. The composition of two contracts,
denoted by C; || Ca2, can be computed as ((A; N Agz) U
(G1 N Ga),G1 N Gy).

For a given contract C (A,G) we define the non-
assumption variables Vi and the assumption variable set Vjy.
The non-assumption variable set is a subset of V¢ that is
insensitive to the assumption set, defined formally as follows:

Ve € BV
Va=1veVe | (v, (Ily, /ey (e) € AV
(v, (T, /03 (€)) € A)

The intuition of the definition is that the value of the non-
assumption variable does not affect the satisfaction of the as-
sumption for all behaviors. The set ITy, (IIy, /{3 (e)) contains
all behaviors that have the same value as e for all variables
except for v.

The assumption variable set V4 is defined as V4 = V¢ \ Vg,
the set difference of V and V.

For example, considering the contract C = (A,G) = (z >
0Ny >0,z =2a+y),Ve = {z,y, 2}, the non-assumption
variable set Vi is {z} and the assumption variable Vj, is
{z,y}.

C. Related Work

The notion of contracts derives from a software engineering
technique using preconditions and postconditions to specify
and verify a program method. Once the preconditions, the
responsibilities of the caller, are satisfied, the method ensures
the postconditions. Variants of these specifications are also
proposed to reason different systems. For example, Jones [15]
proposes rely-guarantee reasoning for concurrent program-
ming, adding rely-conditions, the assumptions on the changes
of global states made by other processes, and guarantee
conditions, the changes of global states that can be made by
the programs itself. Meyer [17] was the first to use the term
“contract” in its proposed design methodology, as an analogy
to business contracts between the caller of function and the
function itself.

The contracts are later adopted in the (cyber-physical) sys-
tem design domain for formal verification and specifications of
components operating in parallel. Abadi ef al. [1], [2] was the
first to represent specifications as assumptions and guarantees



for Transition Systems and their composition. Sangiovanni-
Vincentelli et al. [25] then developed the contract-based design
methodology, which utilizes contracts in the platform-based
design for cyber-physical system designs. The contracts in
the methodology include horizontal contracts and vertical
contracts. The horizontal contracts describe the interactions
of the components in the same level of abstraction, and
the vertical contracts capture additional assumptions between
different levels of abstraction. Applications of the contract-
based design methodology to build a systematic design flow,
such as aircraft Electricity Power System [21] and analog
system interface design [20], have demonstrated its potentials
in handling complex design problems. Extensions of contracts
formalism are also proposed in different applications, such
as optimization of controller designs [22], stochastic sys-
tems [19], and hyperproperties [13] We refer interested readers
to Chapter 3 of the monograph by Benveniste et al. [4], which
provides a comprehensive background of contracts in software
engineering and their adoption by the cyber-physical domain
in formal verification and specification.

This paper focuses on the problem in the application of
refinement in contract-based design. Many works have pro-
posed algorithms for verifying and generating refinement of
contracts. Cimatti et al. [5], [6] proposed the property-based
proof systems to check whether a system is refined by the sub-
module contracts. The algorithm tests whether the guarantees
generated by all submodules satisfy the top-level guarantees,
and any top-level environments operating with all submodules
create an environment for each submodule. Le ef al. [16]
proposed a similar paradigm more generically by defining
a set of metatheoretical operators which allows the proof
strategy to apply in different contract frameworks. Iannopollo
et al. [9] adopted a hierarchical verification strategy and pro-
posed a library-based contract refinement checking algorithm.
The algorithm utilizes pre-checked refinement relations in the
library to accelerate the verification. Iannopollo et al. [8], [10]
also proposed a counter-example guided inductive synthesis-
based constrained synthesis flow to synthesize contracts from
a library of components or contracts specified using linear
temporal logic. Their subsequent work [11] improves the syn-
thesis efficiency by hierarchically decomposing the contracts
into smaller contracts. These works are not aware of the
potential vacuous implementation problem in the refinement
process, the key enabler of the independent design paradigm.
To the best of our knowledge, this is the first work that
formally defines the requirement for independent design using
contracts and introduces constraints to address the problem. As
a result, this work complements the algorithms and tools by
identifying the requirements for ensuring independent design.
By enforcing the requirements, independent design can be
ensured using the contract-based design without worrying
about the vacuous implementation problem.

Receptiveness is the foundation for our proposed receptive
contracts. The concept of receptiveness, which originates from
the implementation point of view, was first proposed in [3],
where receptiveness is defined over behaviors as any values

(a) Original Contract

(b) Refined Contract

Fig. 2: A scenario that all implementations in the refined con-
tract are vacuous implementations since they form an empty
set when intersecting with the original contract assumption.

for the specified variables corresponding to some behaviors
restricted by an assertion. Then the consistency of a con-
tract is defined as the guarantee being u-receptive, where
u stands for the uncontrolled variables in the variable set.
The same notion for receptiveness was also mentioned in the
later works [4], [5], [7], [25], while the contract consistency
was defined differently in [4], [14] as contracts containing
nonempty implementations set.

However, these works do not show the relation of recep-
tiveness to the ability of independent design, as they intend
to ensure receptive implementations and semantically separate
the responsibilities of the assumption and guarantees instead
of independent design. Their definition based on predefined
partitioning of variables also limits the application of contracts
as it cannot apply to components without rigorous input-output
ports such as ones with bidirectional ports. Furthermore,
being u-receptive requires the guarantees to include behaviors
rejected by its assumptions, and thus the guarantees have
larger behavior set sizes and contain redundant information.
Therefore, taking the notion of receptiveness for behaviors as
the foundation, our work defines receptiveness for contracts
which does not contain redundant information by requiring
receptiveness only for the behaviors accepted by assumptions.
We show that our proposed receptive contracts ensure inde-
pendent design and it does not rely on predefined partitioning
of controlled and uncontrolled variables.

III. THE VACUOUS IMPLEMENTATION PROBLEM

As introduced before, the empty sets of behaviors could be
problematic in the set-based definition of contracts. Given a
contract C = (A, G), an implementation of the contract C is a
component M such that Mz N A C G. Since an empty set is
a subset of G, a component M/, such that M, N A =0 is by
definition an implementation of C. However, this implemen-
tation is not compatible with the targeted environment A. We
call such an implementation a “vacuous implementation” of
the contract. We also define a “strict implementation” of the
contract C as an implementation M¢ such that Me N A # ().

During the design process, we should avoid vacuous imple-
mentations and guarantee strict implementations. However, the
refinement of contracts results in smaller acceptable behavior
sets, and thus we may lose all strict implementations for the
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Fig. 3: A motivating example that shows the vacuous imple-
mentation problem in contract refinement. All implementations
based on the refined composition C; || Co are vacuous
implementations for Cs.

original contracts. Consider a scenario where the contract is
C = (A,G) and its refinement contract is C’ (A, G
such that the acceptable behavior set of the refined contract
and the original assumption set are disjoint, as illustrated in
Fig. 2. All implementations M’ of the contract C’' are vacuous
implementations since M'NAC (G'UA )N A =0.

In this section, we first provide a motivating example of the
vacuous implementation problem in the independent design
and then formulate the requirements to avoid the problem.

A. Motivating Example

Fig. 3 shows an example that the refinement of contracts
results in vacuous implementations. Let the system contract
be Cs = (As,Gs) = (x > 2,y = 4x), and two contracts be
Cl = (Al,Gl) = (I Z O,Z = 2$) and CQ = (AQ,GQ) = (Z Z
1,y = 2z) as its subsystems whose composition refines the
system contract. All contracts are defined on the variable set
Vi = {z,y, z}. The two subsystem contracts are then sent to
different suppliers for independent development. If the supplier
for C; refines the contract as C; = (A},G}) = (x > =5,z =
2x Az < 1) during the design process, the composition of
C} and C, remains a refinement for the system-level contracts.
However, all implementations of the composition are vacuous
implementations for Cg, as shown in the following derivation:

(M N M) N A, C(GLUA) N (GyUAy) N A,
C (GLUA}) N A
Cz=2xANx<]l)V(z<—=5))A(x>2)
=0,

where M] is any implementation for C; and M, denotes any
implementation for Cs.

The example shows that the refinement can result in the
vacuous implementation problem during independent design.
Therefore, we hope to restrict the refinement to guarantee strict
implementations, and the vacuous implementation problem
can avoid the problem in independent development as long
as all suppliers follow the restriction. In the next part, we

formulate the requirement to avoid vacuous implementations
and develop a restriction based on the requirement.

B. Requirement for Independent Design

We define contract replaceability as the requirement to
guarantee strict implementation:

Definition 1. Let C; = (A1,G1) and Co = (As,G3) be
saturated contracts that satisfy C1 = Co and share the same
variable set Vi and assumption variable set V4. We say that
C; is replaceable by Co, or that Co replaces Cy, if the following
condition is satisfied:

de € HVA (A1)>HVC (6) N Gy 7’5 (Z),
or, equivalently, Ay N Gy # 0.

Contract replaceability requires a projected behavior e in the
assumption set A; such that the intersection of the guarantee
set and the behavior projected back to the entire variable
set V¢ is not an empty set. As a result, a behavior with
the assignments of the assumption variables satisfying A,
the targeted environment, can be found in G, the refined
guarantee. A binary relation called the contract replaceability
relation is defined as the set containing all contract pairs
(C1,C3) such that C; replaces Cs.

Contract replaceability ensures that the strict implementa-
tions for the original contracts can be found using the refined
contract, summarized in Theorem 1:

Theorem 1. Let C; = (A1, G1) and Co = (Aa, G) be satu-
rated contracts over the same variable set Vi and assumption
variable set Vs such that Co refines C1 and Cy replaces Ci.
Any implementation My of Co such that My 2 (Gy N As) is
a strict implementation for C;.

Proof. We prove Theorem 1 by showing that Ms N A; is not
an empty set:

MgﬂAlQ(GQOAQ)PIAl:GQﬁAl?A@,

where the equality is by the definition of refinement that
A; C As, and the inequality is by the definition of contract
replaceability. Therefore, M>MA; is a superset of a non-empty
set, which means M5 M A; is not an empty set and thus a strict
implementation for Cy. ]

As a result, once the system contract is replaceable by the
refined contract, we can find a strict implementation for the
system contract using the refined contract.

However, we need the assumption set from the system
contract to ensure contract replaceability. In independent de-
sign, the supplier does not obtain the system contract but
relies on a refined contract. Intuitively, we can require that
the supplier guarantees contract replaceability for the refined
contract instead of the system contract. Unfortunately, the
contract replaceability relation is not transitive. A contract
replacing the refined contract is not guaranteed to replace the
system contract, as shown in the following example:



Example 1. Consider the following three contracts Cy,Cs, and
C3, where Cl i Cg t C3.‘

C1=(A1,G1) = (v >0,y = 27)
Co=(A2,G2)=(x>-2,(y=2cAh2x<4)V(x<-2))
Cs3=(A3,G3)= (x> -4, (y=2c AN <-1)V (z < —4)).
We can see that Co replaces Ci, and that Cs replaces Cs.

However, Cs does not replace Cy as A1NGs = (z > 0)A((y =
e Az < —-1)V(z<—4)=10 "

To address the problem, a transitive relation that guarantees
strict implementation is required. Thus, we propose strong
replaceability:

Definition 2. Let C; = (1417 Gl) and Co, = (Az, GQ) be
saturated contracts that satisfy C1 = Co and share the same
variable set Ve and assumption variable set V4. We say that
Cy is strongly replaceable by Co, or Co strongly replaces C,
if the following condition is satisfied:

Ve € HVA1 (Al)’ I_IVC1 (6) NG 7& 0.

Strong replaceability requires that for all projected behaviors
e in the assumption set A;, the intersection of the guarantee
set and the behavior projected back to the entire variable set
Ve, is not an empty set. As a result, for each assignment
of the assumption variables satisfying A;, we can always
find a satisfying behavior in G5. A binary relation called the
strong replaceability relation is defined as the set containing all
contract pairs (Cq,Cz) such that C; strongly replaces Co. The
difference between replaceability and strong replaceability is
the quantification of the projected behavior.

We can show that the strong replaceability relation is
transitive:

Proposition 1. Ler C; = (A1,G1), Co = (A2,G3), and C3 =
(As, G3) be saturated contracts over the same variable set Vi
and assumption variable set V4 such that Cy = Co = Cs. If
Cy strongly replaces C1 and Cs strongly replaces Cs, then Cs
strongly replaces C;.

Proof. Since C3 strongly replaces Cy, by the definition of
strong replaceability:

Veq € HVA (AQ),HVC (62) N G3 7é 0. (1)

And A; C A, by the definition of contract refinement,
so their projected behavior sets also hold the subset relation:
Iy, (A1) € Iy, (A2).

Therefore, Ve; € Iy, (A41),e1 € Iy, (A2), and thus e;
satisfies the qualification for (1): Ve; € Iy, (A7), Iy, (e1) N
G3 # (). By the definition of strong replaceability, C3 strongly
replaces C;. ]

Combining Theorem 1 and Proposition 1, we conclude that
strong replaceability guarantees strict implementations during
independent design in Theorem 2

Theorem 2. Let C; = (Al, G1>, Cy = (AQ, GQ), Cy =
(43,G3), ...,Ch = (An, Gy) be saturated contracts over the

(a) A receptive contract

(b) A non-receptive contract

Fig. 4: Illustrations of a receptive contract and a non-receptive
contract. (a) A receptive contract as all its areas separated by
the dashed lines intersect with the guarantee set. (b) A non-
receptive contract as the area at the bottom of A does not
intersect with the guarantee set.

same variable set Vi and assumption variable set V4 such
that C; = Ciyq1 for i = 1...n — 1. If C;41 strongly replaces
Ci fori=1...n—1, then any implementation M, such that
M, O A, NG, strictly implements C;.

Therefore, we propose strong replaceability as the restriction
for suppliers to perform contract refinement. As long as all the
suppliers follow the restriction to ensure strong replaceability,
strict implementations for the system contracts can be found
by A, NG,.

IV. RECEPTIVE CONTRACTS

We have formulated strong replaceability as a restriction
to ensure strict implementations in independent design. How-
ever, the problem that the conventional operations in assume-
guarantee contracts cannot ensure strict implementations is
worth exploring. In this section, we propose contract recep-
tiveness as a constraint for assume-guarantee contracts so that
any operations in independent design under the constraint
ensure strict implementations. We will show that the receptive
contract guarantees strong replaceability for refinement in
Section V and cascade composition in Section VI.

Contract receptiveness is defined as follows:

Definition 3. A receptive contract is a contract C = (A, G)
satisfying the following condition:

Ve € HVA (A),HVC (6) NG 7& 0.

A receptive contract requires that every assignment to
the assumption variable set allowed by the assumption set
corresponds to at least a behavior in the guarantee set. Fig. 4
illustrates the concept of the receptive contract. The areas
between the dashed line represent all the assumption set
assignments, Iy, (A) Each area in the receptive contract, as
shown in Fig. 4 (a), must contain a behavior in GG, while some
areas in a non-receptive contract, as shown in Fig. 4 (b), do
not contain any behavior in G.

Example 2. The contract Cy in Example 1 is a receptive
contract while the contracts Co and Cs are not receptive
contracts. To check the receptiveness of C1, we first find the
assumption set assignments 11y, (A1) = {z | z > 0}. For all



assignments x > 0, we can find a behavior (z,y) = (z,2z)
that is in G1 and lly (x). Therefore, Ci is a receptive
contract.

Then we check the receptiveness of the contracts Co and
Cs in Example 1, The assignments of the assumption variable
allowed by Co is {x | * > —2}. However, as the guarantee
set requires x < 4, any behavior with assignments of the
assumption variable being x > 4 is not in the guarantee set.
Similarly, for Cs, the guarantee set requires x < —1, and
thus any behavior with assignments of the assumption variable
being x > —1 is not in the guarantee set. Therefore, the two
contracts are not receptive. (]

V. REFINEMENT WITH RECEPTIVE CONTRACTS

In this section, we show that the proposed receptive con-
tracts guarantee strong replaceability for refinement during
independent design and allow the suppliers to discover design
faults in the specifications.

Theorem 3 states that receptive contracts guarantee strong
replaceability in the refinement operation:

Theorem 3. Let C; = (A1, G1) and Co = (Ag, G2) be satu-
rated contracts over the same variable set Vi and assumption
variable set V4 such that Cy > Cs. If C3 is a receptive contract,
then Co strongly replaces C;.

Proof. We prove Theorem 3 by converting the condition for
receptiveness to the condition for strong replaceability:

As C, is receptive, using the definition for the receptive
contract we get:

Ve, € HVA (A2)7 Ga N HVc (61) 7é .

By the definition of contract refinement, A; C Aj, so
HVA(AI) - HVA(AQ). Therefore, Veg S HVA(Al),GQ S
ITy, (A3). Combining the above results, we get

Vey € HVA (Al), Ga N HVC (62) 75 0.

Therefore, Cy strongly replaces C; by the definition of strong
replaceability. O

Receptive contracts guarantee strong replaceability not only
for the abstract contracts before refinement but also for the
system contract. To see this, we first show that a receptive
refined contract implies that its abstract contract is also recep-
tive:

Proposition 2. Let C; = (A1,G1) and C; = (Az,G2)
be saturated contracts over the same variable set Ve and
assumption variable set Vo such that C1 = Co. If Co is a
receptive contract, then Cy is also a receptive contract.

Proof. During the proof in Theorem 3, we have derived the
following:

Veqs € HVA (Al), GQ n HVC (62) 75 .
By the definition of contract refinement, G; O Ga:

Veg € HVA (Al), GinN HVC (62) D G2 N HVC (62) 7é 0.

Therefore, C; is a receptive contract by Definition 3. O

Strong replaceability for the system contracts, summarized
in Theorem 4, can thus be derived by combining Proposition 2
and Theorem 3:

Theorem 4. Let C; = (Al, Gl), Cy = (A27 GQ), C3 =
(As,Gs), ...,Ch = (Ay, Gy) be saturated contracts over the
same variable set Vo and assumption variable set V4 such that
Ci = Ciy1 for i =1...n—1. If C, is a receptive contract,
then C,, strongly replaces C;.

Proof. We prove Theorem 4 by induction. When n = 2, the
statement holds by Theorem 3. Assume that the statement
holds for n = k. When n = k+1, C1 strongly replaces Co by
the assumption. Cs, is a receptive contract as Cj1 is a receptive
contract by Proposition 2. Applying Theorem 3 on Cs and C,
Cy strongly replaces C;. Therefore, by the transitivity of strong
replaceability in Proposition 1, Cjy; strongly replaces C;. By
mathematical induction, Theorem 4 holds for any n > 2. [

Furthermore, Theorem 4 implies that the suppliers can dis-
cover faults in the specification. We can impose receptiveness
as a constraint on the assume-guarantee contract. The suppliers
can rest assured that strong replaceability holds as long as
the received abstract contract is receptive. In contrast, if the
suppliers receive a non-receptive abstract contract, some faults
must have occurred before the abstract contract was generated.
Accordingly, the supplier can alert the specification provider
to check for faults during the design process.

VI. CASCADE COMPOSITION WITH RECEPTIVE
CONTRACTS

We have presented requirements for independent design
under the refinement operations. However, in contract-based
design, an abstract contract can be decomposed into several
contracts whose composition refines the abstract contract. The
decomposition of a contract is analogous to decomposing
a system into several subsystems. Each subsystem follows
the decomposed contracts. If a supplier receives one of the
subsystem contracts and refines the subsystem contract, the
supplier cannot check the strong replaceability of the compo-
sition without the other subsystem contracts. In this section,
we discuss strong replaceability in composition using receptive
contracts.

A composition is either a cascade composition or a feedback
composition, depending on the topology of the subsystems.
A cascade composition has subsystem order such that the
assumption variable set of each subsystem only connects to the
variables from the assumption variable set of the environment
or the variables set from the preceding subsystems. We will
use the subscript s to denote the system contract and numbers
as subscripts to denote the order for the subsystem in a cascade
composition. For example, let a system C, be a cascade
composition of two subsystem contracts C; || Ce. Then C;
precedes Co, and thus by the definition of cascade composition,
V4, must be a subset of V4,. A feedback composition is any
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Fig. 5: Visualization of Lemma 1. Any behavior from the
targeted assumption satisfies the assumption of C;.

composition that is not a cascade composition, meaning that
subsystem order cannot be defined.

In this section, we discuss the following problem: Let the
system contract be C; = (As,Gs), Let 1 = (A1,G1) and
Cos = (A2,G2) be saturated receptive contracts in a cascade
composition such that Cs; > C; || Ca. Let C; = (41,GY))
and C}, = (A}, G%) be saturated receptive contracts such that
C1 = Cj and Cy = C}. All the behavior sets are defined in the
variable set V.. We will show that the composition C} || C,
strongly replaces the system contract Cs = (As, G). For the
feedback composition, we will present an example showing
that the composition of the refined receptive contracts does not
ensure strong replaceability. More constraints are thus required
for general composition. We leave these additional constraints
for feedback composition as future work.

We develop two lemmas to show strong replaceability of the
cascade composition by receptive contracts. The first lemma,
summarized in Lemma 1, states that any assignments to the
assumption variable set of the system contract must satisfy the
assumption of the first contracts.

Lemma 1. Let Cs = (AS,GS), Cl = (Al,Gl), and CQ =
(As, G2) be saturated receptive contracts such that Cs »= Cy ||
Ca, then Ve € Ily, (As),Ily, (e) € Ily, (A1)

Fig. 5 illustrates the concept in Lemma 1. The lemma is
proved by contradiction: if TIy, (e) ¢ Ily, (A1), then e ¢
My, (As).

Proof. Assume that e is a counterexample of Lemma 1 such
that e € Ily, (As) and Ily, (e) ¢ Iy, (A1). We want
show that e ¢ Tly, (As), and thus the assumption leads to
a contradiction.

First, we show that ITy,, (e) C A; and Iy, _(e) C G;. Since
Iy, (e) ¢ Iy, (A1), we can project the two sides back to

Vc:

s

) C A, CGLUA, CGy. )

Then we discuss whether e can satisfy the assumption set of
the second contract in two cases. The first case is Iy, | (e) C

Iy, (Az) and the second case is Iy, (e) & Iy, (As).

a) Case 1:
Va, (€) C Iy, (A2)
= chb (Ily,, (e)) € My, (v, (A2))
— HVC (e) - HVC (AQ)
= Iy, _(e) C Ay C Gy U Ay =Gy (3

Combining (2) and (3), we get:
Iy, (e) € (A1 UA2) N
((A1 NAz) U

(G1 N Go)
(G1 N Ge))

Iﬁ N

Therefore, Ily, (e) C ATS, and thus e ¢ Ily, (A,), which
contradicts our assumption that e is a counterexample.

b) Case 2: When Ily, (e) ¢ Iy, (Az), Iy, (e) N
My, (A2) # 0. We can find a behavior ez € Ily,, (e) N
Iy,, (Az2). Since Cq is a receptive contract, we can find a
behavior e3 € Ily,, (G2)NIly,, (e2). Considering the behavior
es = Iy, (e3) NIy, (e), we can get e; € Ily, (e) and
e4 € HVCQ (63). Also, e4 € HVCS (6) implies e4 € Il C Gs.

Therefére, we can get:

es € ch2 (GQ) — HVcs (63) C Gy = e4 €Go.
As a result, we can derive that e4 is not a behavior in Aj,:
€4 € /Tlﬁ (Gl ﬁGg)
S ((Al M A2) @] (Gl N Gg))
€ A,.
Therefore, e, € A,, and thus e = Iy, (es) ¢ Iy, (Ay),
which contradicts the assumption that e is a counterexample.

As both cases lead to contradictions, Lemma 1 is thus
proved. O

The other lemma, as shown in Lemma 2, states that the
behaviors of the first contract satisfy the assumption of the
second contract if the behaviors meet the assumption of the
system contract.

Lemma 2. Let C; = (45,Gs), Ci = (A1,G1), and
Co = (Az,Gs) be saturated receptive contracts such that
Cs = Cq || Co, then Ve, € HVA (A ) Vey € HVC1 (Gl) n
HVC1 (61) HVA2 (61) N HVA2 (62) € HVA2 (AQ)

Fig. 6 illustrates the concept in Lemma 2. The projected as-
sumption from the system contracts and all the corresponding
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Fig. 6: Visualization of Lemma 2. The combined behavior of

any behavior from the targeted assumption and the correspond-
ing behavior generated by C; satisfies the assumption of C,.

behaviors generated by G; must be in the assumption set of
the second contract.

The lemma is proved by contradiction that if Iy, (e1) ¢
HVAl (Al)’ then e ¢ HVAS (AS):

Proof. Assume that e € Ily, (As) and that ez € Iy, (G1)N
Iy, (e1) forms a counterexample such that Ily, (e1) N
Iy,, (e2) & Iy, (Az2). Therefore, we can derive the follow-
ing:
HVA2 (61) N HVA2 (62) ¢ HVA2 (AQ)
= Iy, (e1) NIy, (e2) € A2 C G2
and
e € chl (Gl)
- HVCS (62) C Gy
- HVCS (61) M HVCS (62) C Gy.

Similar to the proof foir Lemma 1, we can show that
My, (e1) NIy, (e2) C As:

Iy, (e1) N1y, (e2) C

Az) N (G1 n GQ)
(A1 N A3) U (G1 NGa))

—~ |

N 1N
]

Therefore, ITy, (e1) C A, and thus e; ¢ IIy, (As) contra-
dicts the assumption. O

With Lemmas 1 and 2, we conclude that any refinement to
the receptive contracts ensures strong replaceability, as shown
in Theorem 5:

Theorem 5. Let C; = (As,Gs), C1 = (41,G1), and Co =
(A2, G2) be saturated receptive contracts such that Cs = Cy ||
Co, and let C = (A}, GY) and C, = (A}, GY) be saturated
receptive contracts such that Cy »= Cj and Cy = Cl, then
Ci || C4 strongly replaces Cs.

Proof. Using the proposition of contract refinement, C; =
Ci || C3. By Lemma 1, for every e € Ily,_ (As), Iy, (e) €
Iy, (A}). Since C] is a receptive contract, we can find ez
such that ez € Ily, (e) NIy, (GY), and thus:

HVCS (eg) S G/l “4)

By Lemma 2, e; and e satisfies Ily,, (e) N Iy, (e2) €
Iy,, (Az). Similarly, since Cj is a receptive contract, we can
find e3 such that e3 € Iy (Ily,, (e)NIly,, (e2))NIly,, (G5),
and thus:

HVCS (63) S G/Q %)

Considering the behavior ITy,_(e) NIy, (e2) NIly,_(es) and
combining the results in (4) and (5), we get:

HVCS (6) n HVCS (62) N HVCS (63) € Gll n GIQ
C G,.

As Tly,_(e) N1y, (e2) NIy, (e3) € Iy, (e), the condition
for strong replaceability is satisfied. Therefore, C; | Cj
strongly replaces Cs. O

Finally, we show an example of a feedback composition
using receptive contracts that contains only vacuous imple-
mentations after refinement:

Example 3. Let C, be the system contract, C; and Co be the
subsystem contracts, and C} be the refined contract for Cy:
Co = (True,y = ). Ve = {4},
Ci=(True,(y=b+1)V (y =ab)), Vi = {z,y,b},
Co = (True,b=y+1),Va = {y,b},
Cp = (True,y =b+1),Vi' = {x,y,b}.

The compositions C; || Co and Cy || Co both refine C1. But
Ci || Co = (True,D), and thus the only implementation is
a vacuous implementation M| = (), even though the refined
contract is a receptive contract. ]

We believe that additional constraints are needed for feed-
back composition such that the strong replaceability of any
composition is ensured. The constraints for the feedback
composition will be material for future work.

VII. DISCUSSION

In this section, we discuss the impacts of the discovery and
proposed concept on the contract-based design process, and
thus the need for the development of new algorithms and tools
for supporting contract-based design.

A. Design Faults in Refinement

The vacuous implementation problem should be regarded
as a type of design fault, which might be caused by the
designer or problems in the automation tools to generate
refined contracts not satisfying the replaceability relation. The
replaceability relation is crucial for the refinement process
to guarantee the compatibility of its subsystems and thus
avoid vacuous implementations after system integration. Only



verifying the refinement relation cannot capture this type
of design fault. Therefore, existing contract-based design
methodologies [19], [25] that propose using refinement in
the design process, should include a stage for verifying the
replaceability of the top-level specification. The transitive
strong replaceability breaks down the problem of verifying the
replaceability of the top-level specification into verifying the
strong replaceability between each refinement step and thus
can be applied in the independent design paradigm. If the
design faults are not captured in this early stage of design,
the vacuous implementation would result in huge costs and
design time overhead.

B. Applying Receptive Contracts

In Section IV- VI, we have shown that receptive con-
tracts guarantee strong replaceability in cascade composition
and pure contract refinement. The theory indicates that us-
ing receptive contracts can further simplify the process of
verifying the replaceability relation. As long as the system
does not contain feedback composition, receptive subsystem
contracts guarantee the replaceability of the refined systems
to the top-level specifications. In many application fields, the
specifications should be receptive by their definitions, such
as controller design and sequential programs. The inputs and
outputs are explicitly defined for every system in these fields.
Therefore, verifying receptive contracts can serve two roles
at the same time, one is verifying the design faults, and the
other is maintaining the semantics of the components, as it is
meaningless for a controller or a program method to have no
outputs for any allowable inputs.

C. The Need for Development of New Algorithms and Tools

With the proposed theory, we suggest the development
of new algorithms and tools to facilitate the contract-based
design. Existing contract tools and algorithms [5], [9] do not
include the functionality to verify the replaceability relation,
and thus are unable to detect the design faults of vacuous
implementation. The universal quantification in the strong
replaceability and receptiveness is challenging for algorithm
development as its decidability depends on the representa-
tions of contracts. For example, the Presburger arithmetic is
decidable while it becomes undecidable if multiplication is
involved [18]. Therefore, research on tools and algorithms for
different representations of contracts is required to prevent
design faults and enable independent design using contracts.

VIII. CONCLUSION

We identified the vacuous implementation problem us-
ing assume-guarantee contracts under the independent design
paradigm. We first explored the notion of contract replaceabil-
ity. This notion was shown to be the requirement to ensure
strict implementations, but it is not transitive, thus limiting
its applicability in independent design. The stricter notion of
strong replaceability also ensures strict implementations and
is transitive, thus fitting the independent design paradigm.
We then proposed the notion of contract receptiveness, which

guarantees strong replaceability. Moreover, we showed that
receptive contracts can be implemented independently and that
the composition of their implementations will not be vacuous
in the case of cascade composition. A supplier receiving a
contract as the specification for implementation can check
whether this contract is receptive. If so, the supplier knows
in advance that it can proceed to develop an implementation
and that this implementation will integrate correctly into the
system integrator’s design. Our areas of future work include
finding constraints for feedback composition, developing tools
to support independent design, and investigating the replace-
ability in different contract formalisms.
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